
amplify inflammation in humans as well as mice
(fig. S15).
Mortality fromsepsis rangesbetween30and50%

and is rising because of drug-resistant organisms,
a growing elderly population, and an increased
incidence of immunosuppression (25–28). The
failures of anti–Toll-like receptor 4, recombinant
activated protein C, and anti–TNF-a therapies in
clinical trialsnecessitatea rethinkingof sepsis’patho-
physiology (6, 29–33). Because many early-phase
inflammatory cytokines operate concurrently and
redundantly, identifying upstream triggersmay
generate therapies with broad downstream bene-
fits. Altogether, the evidence shown here supports
the hypothesis that IL-3 mediates experimental
and human sepsis, is a major upstream orches-
trator of the septic inflammatory phase, and can
be harnessed for therapeutic intervention.
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CIRCADIAN RHYTHMS

Time-restricted feeding
attenuates age-related cardiac
decline in Drosophila
Shubhroz Gill,1,2 Hiep D. Le,1 Girish C. Melkani,3* Satchidananda Panda1*

Circadian clocks orchestrate periods of rest or activity and feeding or fasting over
the course of a 24-hour day and maintain homeostasis. To assess whether a
consolidated 24-hour cycle of feeding and fasting can sustain health, we explored the
effect of time-restricted feeding (TRF; food access limited to daytime 12 hours every
day) on neural, peripheral, and cardiovascular physiology in Drosophila melanogaster.
We detected improved sleep, prevention of body weight gain, and deceleration of
cardiac aging under TRF, even when caloric intake and activity were unchanged. We
used temporal gene expression profiling and validation through classical genetics
to identify the TCP-1 ring complex (TRiC) chaperonin, the mitochondrial electron
transport chain complexes, and the circadian clock as pathways mediating the
benefits of TRF.

T
o determine whether a daily rhythm of
feeding and fasting without reducing caloric
intake can improve health metrics, we sub-
jected a 2-week-oldwild-type (WT)Oregon-R
strain (table S1) of Drosophila melanogaster

adults to ad libitum feeding (ALF) or 12-hour
time-restricted feeding (TRF) of a standard corn-
meal diet exclusively during daytime. At night-
time, the TRF cohorts were placed in vials with
1.1% agar to prevent desiccation (fig. S1A). The
daily food intake was equivalent in both groups,
although ALF flies consumed some of their food
during nighttime (Fig. 1A). Unlike ALF flies, the
TRF group did not gain body weight at 5 and
7 weeks of age (Fig. 1B). The ability to fly (flight
index) was slightly improved in the TRF group
(Fig. 1C). Although the total daily activity was
equivalent between both groups of flies (Fig. 1D),
the TRF flies were more active during daytime.
Sleep (defined as five consecutive minutes of

inactivity) (1) assessment revealed that flies on
TRF had less daytime sleep, but more nighttime
and more total sleep, than the ALF flies (Fig. 1E
and fig. S1).
Increase in sleep duration correlates with im-

proved cardiac function (2). Therefore, by high-
speed video imaging of ex vivo denervated hearts
bathed in artificial hemolymph (3), we mea-
sured the diameter of the beating Drosophila
heart at full relaxation and contraction and
the time interval between successive contrac-
tions to calculate cardiac function parameters
(Fig. 2A). At 3 weeks of age, the performance
of both ALF and TRF hearts was indistinguish-
able with equivalent heart period (HP), systolic
diameter (SD), systolic interval (SI), diastolic
diameter (DD), diastolic interval (DI), arrhyth-
mia index (AI), and heart contractility, mea-
sured as fractional shortening (FS) (Fig. 2, B
to F; fig. S2; and movie S1). In the next 2 weeks,
the cardiac performance in ALF flies exhibited
characteristic age-dependent deterioration (4),
with increased SI, DI, HP, and AI and reduced
DD, SD, and FS. TRF flies showed smaller changes
in these cardiac performance parameters in both
genders (fig. S2).
We investigated whether a limited period of TRF

early or late in life could attenuate age-dependent
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Fig. 2. TRF protects against age- and diet-induced decline in cardiac
function. (A) M-mode (mechanical mode) traces showing the movement of
the heart tube edge (y axis) over time (x axis) were generated from videos of
the heart beneath the third thoracic segment by digitally excising and aligning
a 1-pixel-wide vertical strip spanning the heart tube from a fixed location in
successive frames. From the M-mode, cardiac parameters are calculated.
Arrowheads indicate the direction of age- or high-fat diet–induced changes.
(B) Example 20-s M-mode traces of ALF and TRF flies with superimposed

orange (ALF) or blue (TRF) bar indicating diastolic intervals. Average (C) DI,
(D) HP, (E) AI, and (F) FS show protection from age-dependent deterioration
in the TRF flies. (G) Feeding regimens used to test the effect of TRF at an
early or late age revealed improvement in (H) AI. (I) Representative M-modes
of 5-week-old flies subjected to fat diet ALF (FA) or TRF (FT). Average (J) DI,
(K) AI, and (L) HP improved under TRF. Average values for ALF and TRF flies
fed normal cornmeal diets are shown as broken lines for reference. Averages
(n > 30) are shown. *P < 0.05, Mann Whitney test. Error bars: SEM.
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decline in cardiac performance. Flies on ALF or
TRF at 5 weeks of age were switched to the TRF
or ALF condition, respectively (Fig. 2G). In both
groups, 7-week-old flies showed improvement
in some (but not all; see fig. S3) parameters, in-
cluding reduced HP and AI, as well as increased
FS relative to that of flies maintained in ALF
for 7 weeks (Fig. 2H).
Because fat-containing diets deteriorate car-

diac performance (5, 6), we tested the effect of
TRF on flies fed a standard cornmeal diet sup-
plemented with 2%w/v coconut oil. Flies on this
fat diet ad libitum (FA) for 3 weeks showed severe
deterioration of cardiac performance relative
to standard cornmeal-fed counterparts, including
long HP, increased AI, and reduced FS. Yet flies
fed the same fat-supplemented diet under TRF

condition (FT; access to fat diet for 12 hours of
daytime) showed smaller declines in cardiac per-
formance (Fig. 2, I to L; fig. S4; and movie S2)
relative to the FA cohort.
The improved cardiac function under TRF

could result from systemic changes, local changes
in the heart, or both. We measured RNA con-
centrations in the head and periphery (i.e., entire
fly except the head) of 3-, 5-, and 7-week-old ALF
and TRF (standard diet) flies collected every
6 hours over 24 hours (ZT or zeitgeber time 0, 6,
12, and 18). In TRF flies, the gene expression sig-
nature had no resemblance to that of flies ex-
posed to starvation (7) or dietary restriction (DR)
(8) (figs. S5 and S6 and tables S2 and S3). No
transcript showed a large change (fold change > 2
between ALF and TRF group, P < 0.05) at both

5 and 7 weeks of age, indicating that either the
diurnal expression pattern or a small but con-
certed change in the expression level of multiple,
functionally related genes might account for the
health benefits of TRF.
To assess diurnal gene expression, we ex-

amined transcripts from the head and the periph-
ery of 5-week-old flies (on normal diet; ALF or
TRF) at eight different time points spanning
24 hours. A total of 868 transcripts in the head
and 1233 transcripts in the periphery were de-
fined as rhythmic under both ALF and TRF con-
ditions (P < 0.05, 22 hours < period < 26 hours)
(Fig. 3, A and B, and tables S4 and S5). There
were differences in the amplitude and synchrony
of these oscillating transcripts in ALF and TRF
flies. The amplitude (peak-to-trough difference)
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of oscillation of 876 transcripts (71%) from the
periphery and 516 transcripts from the head
(59%) increased under the TRF condition. Fur-
thermore, the peak phases of expression of rhyth-
mic transcripts in ALF flies were distributed
over 24 hours, whereas TRF consolidated the
peak phases to two principal times of the day
corresponding to the ends of the feeding and
fasting periods (Fig. 3, C and D). These syn-
chronous transcript oscillations may coordi-
nate fasting- or feeding-related metabolism
to the appropriate time. As seen in mice (9),
the combined action of the molecular circa-
dian clock and the imposed rhythm of feed-
ing and fasting may improve gene expression
rhythms under TRF and offer systemic meta-
bolic benefit.
To identify the transcriptomic correlates of im-

proved cardiac physiology, we measured cardiac
gene expression in 5-week-old ALF and TRF flies
every 6 hours over a 24-hour period.Heart-enriched
transcripts including Hand, Tinman, He, and
H15 (10) were confirmed to be more abundant
in the heart than in the head and the periphery.
Comparisons between ALF and TRF yielded 145

and 276 transcripts that showed decreased or in-
creased expression, respectively, at all four time
points in the TRF hearts (Fig. 3, E to G, and table
S6). Functional annotation of these transcripts
identified the adenosine 5´-triphosphate (ATP)–
dependentTCP-1 ring complex (TRiC) (also known
as chaperonin-containing TCP-1; CCT) chaperonin
(11) and mitochondrial electron transport chain
(ETC) as the top functional clusterswith increased
or decreased expression in the TRF heart, re-
spectively. Seven out of eight TRiC subunit RNAs
were more abundant at all four time points (fig.
S7 and table S8). Concurrently, mRNAs encoding
52 components of the ETC were decreased in
abundance at three out of four time points and
27 at all four time points in TRF hearts (fig. S8
and table S7). Thus, we considered the circadian
clock, TRiC chaperonin, and mitochondrial ETC
as potentially mediating the beneficial cardio-
protective effects of TRF.
TheDrosophila circadian oscillator is based on

a transcriptional negative feedback loop gener-
ated by the activators clock (CLK) and cycle (CYC)
and the repressors period (PER) and timeless
(TIM) (12). To test the role of the molecular clock

in TRF-dependent improvement of cardiac phys-
iology, we examined flies carrying loss-of-function
mutations in oscillator components: clk, cyc,per, or
tim. These fly strains lacking both molecular and
behavioral circadian rhythms are born without
majormorphological defects of the heart. Although
these mutants all lacked a functional circadian
oscillator, cardiac performance in 5-week-old flies
was variably affected under ALF (Fig. 4A and fig.
S9). For example, theheart period ofper01 and clkar

mutants was comparable to that of WT, whereas
cyc01 and tim01 mutants showed slower heart rate
(Fig. 4A). The WT flies on TRF showed improved
relaxation-contraction function relative to their
ALF counterparts, as reflected in decreased heart
period and arrhythmicity. However, the heart
period increased in clkar mutant flies and did
not change significantly in per01 and cyc01 mu-
tants. TRF increased arrhythmia in cyc01 flies
and had smaller or no significant effect in per01,
tim01, or clkar flies (Fig. 4, A and B, andmovie S3).
Thus, imposition of a diurnal feeding rhythmwas
insufficient for protecting against cardiac aging
unless endogenous circadian oscillations were
intact (figs. S9 and S10).
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circadian mutants, n ≥ 17 TRiC mutants).WT (Oregon-R) data are included
for reference. (E) Representative M-modes of Tcp-1eta mutant flies ex-

hibiting lack of TRF-driven cardioprotection. (F) HP, (G) AI, and (H)
representative M-modes show improved cardiac function in 5-week-old
ALF flies with heart-specific knockdown of genes encoding mitochondrial
ETC proteins relative to 5-week-old male WT flies (n ≥ 24). Three- and
7-week-old male WTdata are included for reference. *P < 0.05, Mann Whitney
test. Error bars: SEM.

RESEARCH | REPORTS



We tested whether the TRiC chaperonin com-
plex contributes to the beneficial cardioprotec-
tive effect of TRF. We investigated heterozygous
P-element insertional mutants for five TRiC
chaperonin subunits (cct5, cct-gamma, tcp1, tcp-
1eta, tcp-1zeta) under ALF and TRF. No gross
morphological heart defect was seen in ALF TRiC
flies (fig. S11). For the TRiCmutants, TRF failed to
improve cardiac contractility relative to genotype-
and age-matched ALF flies as measured by heart
period and arrhythmicity (Fig. 4, C to E; figs. S11
and S12; and movie S4). A potential dominant-
negative effect of the P-element insertion or the
reduced expression of some TRiC components
(fig. S12) might affect normal function of the
TRiC complex in these mutants. The lack of car-
dioprotective benefits of TRF by multiple mu-
tants for different TRiC subunits provides genetic
evidence that the integrity of the entire TRiC
complex supports TRF-driven deceleration of
cardiac aging.
Todeterminewhether thecardiac tissue–restricted

reduction of mitochondrial ETC transcripts con-
tributes to TRF-dependent cardioprotection, we
tested flies with heart-specific RNA interfer-
ence (RNAi)–mediated reduction of ETC complex
components. Heart-specific RNAi of complex I
component CG9762 led to improved cardiac phys-
iology in 5-week-old ALF flies (Fig. 4, F to H, and
movie S5), reminiscent of TRF benefits in WT
flies. Heart-specific RNAi of two additional com-

ponents, CG5389andCG18809, also led to reduced
arrhythmia in 5-week-old ALF flies, although im-
provement in HP was not significant (Fig. 4, F to
H, and fig. S13). Thus, lowering of ETC function
may account for at least a part of the beneficial
effect of TRF.
Genetic, dietary, and lifestyle (shiftwork) pertur-

bation of circadian rhythmspredisposes organisms
to chronic diseases, including cardiovascular dis-
eases. In rodents, the daily cycle of feeding-fasting
under TRF reinforces diurnal rhythms in multi-
ple organs and preventsmetabolic diseaseswhen
the animals are administered a high-fat diet (13).
Here we show that TRF protects against cardiac
tissue aging in flies on either a normal or a fat-
supplemented diet. This benefit appears to be me-
diated by the circadian clock, the TRiC chaperonin,
and mitochondrial ETC components.
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